Three New Manzamine Congeners from Amphimedon Sponge

Daisuke Watanabe, Masashi Tsuda, and Jun'ichi Kobayashi*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

Received December 16, 1997

Three new manzamine congeners (1-3) have been isolated from the Okinawan marine sponge *Amphimedon* sp., and the structures, including relative stereochemistries, were elucidated on the basis of spectroscopic data. Absolute configuration at C-16 of **1** was determined by modified Mosher's method.

Manzamines are unique marine alkaloids possessing an intricate nitrogen-containing ring system at C-1 of the β -carboline ring. Related alkaloids have been isolated from eight genera of marine sponges: *Haliclona, Pellina, Xestospongia, Pachypellina, Petrosia, Cribochalina, Ircinia,* and *Amphimedon.*¹ In our continuing search for new manzamine-related alkaloids from Okinawan marine sponges we have isolated several novel alkaloids.^{2–7} Further investigation of extracts from an *Amphimedon* sponge led to the isolation of three new manzamine congeners, manzamine M (1), 3,4-dihydromanzamine J (2), and 3,4-dihydro-6-hydroxymanzamine A (3). In this paper we describe the isolation and structure elucidation of compounds 1–3.

The sponge *Amphimedon* sp. (SS-264), collected off the Kerama Islands, Okinawa, was extracted with MeOH. The EtOAc-soluble material of the extract was purified by Si gel chromatography to afford compounds **1** (1.5 × 10⁻³ %, wet wt), **2** (4 × 10⁻⁴ %), and **3** (1.5 × 10⁻³ %), together with several known manzamine alkaloids such as manzamine A (5).^{7,8}

Manzamine M {**1**, $[\alpha]^{25}_{D}$ +16° (*c* 0.48, MeOH)} was revealed to possess the molecular formula C₃₆H₄₄N₄O₂ by HREIMS, suggesting the presence of an additional oxygen atom, as compared with manzamine A^7 (5). ¹H and ¹³C NMR data (Table 1) of **1** corresponded well to those of 5, except for the presence of an oxymethine signal [$\delta_{\rm H}$ 4.06 (br t); $\delta_{\rm C}$ 74.4 (d)] and a *trans*-disubstituted double bond [$\delta_{\rm H}$ 5.73 (ddd, J = 14.8, 10.0, 4.3 Hz), $\delta_{\rm C}$ 128.3 (d); $\delta_{\rm H}$ 5.65 (dd, J = 14.8, 8.3 Hz), $\delta_{\rm C}$ 140.6 (d)] in **1**. The hydroxyl group at C-16 and the $\Delta^{14,15}$ double bond were assigned on the basis of HOHAHA correlations from H₂-13 ($\delta_{\rm H}$ 2.95 and 2.73) to H-14, H-15, and H-16. Thus, the structure of manzamine M was assigned as 1. Relative configurations at C-12, C-24, C-25, C-26, and C-34 of 1 were elucidated to be the same as those of manzamine A (5) by NOESY data of 1 as well as by the similarity of the ^{13}C chemical shifts (C-12, δ_C 70.7; C-24, δ_C 42.2; C-25, δ_C 49.1; C-26, δ_C 74.7; C-34, $\delta_{\rm C}$ 57.3) of **1** to those of **5** ($\delta_{\rm C}$ 71.3, 41.0, 46.9, 78.0, and 57.0, respectively).⁸ The *R*-configuration at C-16 was deduced from ¹H chemical shift differences [$\Delta \delta$ (ppm)] $= \delta_S - \delta_R$] at H-14 (δ_S 5.45, δ_R 5.55; $\Delta \delta$ -0.10), H-15 $(\delta_S 5.46, \delta_R 6.03; \Delta \delta - 0.63), H_2-17 (\delta_S 2.37, \delta_R 1.75; \Delta \delta$ +0.62 and δ_{S} 2.20, δ_{R} 1.80; $\Delta\delta$ +0.60), and H₂-18 [δ_{S} 2.12 (2H), δ_R 1.81 and 1.79; $\Delta \delta$ +0.31 and +0.33] of (S)-

and (*R*)-MTPA esters⁹ (**4a** and **4b**, respectively) of **1**. The absolute stereochemistries at the remaining five chiral centers of **1** also seem to be the same as those of manzamine A (**5**) inasmuch as both compounds were isolated from the same sponge and possessed dextrorotation.

¹H and ¹³C NMR data (Table 2) of compound **2** { $[\alpha]^{30}_D$ +50° (*c* 0.10, MeOH)} were similar to those of known manzamine J² (**6**), except for the chemical shifts of C-3 (δ_C 48.8) and C-4 (δ_C 19.1), which were identical to the corresponding resonances in 3,4-dihydromanzamine A.⁶ The molecular formula C₃₆H₄₈N₄O of **2**, as established by HREIMS data, also supported the presence of two additional hydrogen atoms in manzamine J (**6**). Treatment of **2** with 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ) gave manzamine J (**6**). Thus, the structure of **2** was concluded to be 3,4-dihydromanzamine J.

HREIMS data of compound **3** { $[\alpha]^{25}_{D}$ +28° (*c* 1.2, MeOH)} indicated the molecular formula to be C₃₆H₄₆N₄O₂. The ¹³C NMR data (Table 2) of **3** suggested the presence of a 3,4-dihydro- β -carboline ring (C-3, δ_{C}

^{*} To whom correspondence should be addressed. Tel.: (011) 706-4985. Fax: (011) 706-4989. E-mail: jkobay@pharm.hokudai.ac.jp.

Table 1. 1 H and 13 C NMR Data of Manzamine M (1) in CD₃OD

position	$\delta_{ m H}$	m	<i>J</i> (Hz)	δ_{C}	m
1				145.6	s
3	8.35	t	5.2	139.6	d
4	8.00	d	5.2	115.3	d
4a				123.5	S
4b				132.1	S
5	8.19	d	7.7	123.1	ď
Ĝ	7 30	dd	7771	121 7	ď
7	7 59	dd	7182	130.3	ď
8	7 72	d	8 2	114.1	ď
82	1.12	u	0.2	135.7	e u
0a 0a				1/1 3	5
10				141.5	3
10	6 5 4			143.3	3
11	0.34	5		130.4	a
12	9.05			70.7	5
15	2.95	m 	10.0 14.4	50.5	ι
14	2.73	aa	10.0, 14.4	100.0	,
14	5.73	ddd	14.8, 10.0, 4.3	128.3	d
15	5.65	dd	14.8, 8.3	140.6	d
16	4.06	brt	7.5	74.4	d
17	1.72	m		37.2	t
	1.52	m			
18	1.68	m		27.4	t
	1.45	m			
19	1.66	m		22.5	t
	1.45	m			
20	2.60	tt	4.4, 8.6	55.9	t
	2.30	m			
22	2.81	m		55.3	t
	2.18	m			
23	1.98	m		33.3	t
	1.72	m			
24	2.93	m		42.2	d
25				49.1	s
26	4 20	s		74 7	ď
28	2 95 ^a	m		53.1	t
29	1 99	m		34.5	ť
20	1.00	m		01.0	Ľ
30	1.07	m		979	+
50	1.55	m		61.6	ι
21	1.45	m		20.1	+
51	2.34			30.1	ι
20	2.22 5.09	111 	100 71	196.0	J
32	5.98	at	10.9, 7.1	136.9	D L
33	5.36	brt	8.8	131.4	a
34	4.32	brt	8.3	57.3	d
35	2.41	dd	8.6, 13.2	45.3	t
	1.68	m			
36	2.95	d	11.6	65.6	t
	1.95	d	11.6		

^a 2H.

48.8; C-4, $\delta_{\rm C}$ 19.2). The presence of a hydroxyl group at the C-6 position was deduced from similarity of the ¹³C chemical shifts at C-4b ($\delta_{\rm C}$ 126.0), C-5 ($\delta_{\rm C}$ 103.4), C-6 ($\delta_{\rm C}$ 149.8), C-7 ($\delta_{\rm C}$ 114.5), C-8 ($\delta_{\rm C}$ 112.9), and C-8a ($\delta_{\rm C}$ 135.2) to those of 6-hydroxymanzamine A (7) (C-4b, $\delta_{\rm C}$ 131.9; C-5, $\delta_{\rm C}$ 107.4; C-6, $\delta_{\rm C}$ 153.4; C-7, $\delta_{\rm C}$ 120.5; C-8, $\delta_{\rm C}$ 114.9; C-8a, $\delta_{\rm C}$ 136.7).⁶ DDQ oxidation of **3** gave 6-hydroxymanzamine A (7). Thus, the structure of compound **3** was elucidated to be the 3,4-dihydro form of 6-hydroxymanzamine A (7).

Manzamine M (1) is the first manzamine congener with a hydroxyl group on the C-13–C-20 chain. Manzamine M (1), 3,4-dihydromanzamine J (2), and 3,4dihydro-6-hydroxymanzamine A (3) showed cytotoxicity against murine leukemia L1210 cells (IC₅₀, 1.4, 0.5, and 0.3 μ g/mL, respectively). Compounds 1, 2, and 3 exhibited antibacterial activity against *Sarcina lutea* (MIC, 2.3, 12.5, and 6.3 μ g/mL, respectively) and *Corynebacterium xerosis* (MIC, 5.7, 12.5, and 3.1 μ g/mL, respectively).

Experimental Section

General Procedures. Optical rotations were recorded on a JASCO DIP-360 polarimeter. The IR and UV spectra were taken on JASCO FT/IR-5300 and JASCO Ubest-35 spectrophotometers, respectively. ¹H and ¹³C NMR spectra were recorded on Bruker AMX-600 and ARX-500 spectrometers, respectively. EIMS were obtained on a JEOL DX-303 spectrometer at 70 eV.

Extraction and Isolation. The Amphimedon sponge¹⁰ (1.0 kg, wet wt) collected off the Kerama Islands, Okinawa, was extracted with MeOH (1 L \times 2). The MeOH extract (71 g) was partitioned between EtOAc (400 mL \times 3) and 1N NaCl solution. Part (15 g) of the EtOAc-soluble material (51.1 g) was subjected to a Si gel column (CHCl₃–MeOH, $95:5 \rightarrow 90:10 \rightarrow 70:30$). The fraction eluting with CHCl₃-MeOH (70:30) was separated on an alumina column (CHCl₃) and then a Si gel column (cyclohexane-Et₂NH, 100:2) to yield manzamine M (1, 4.8 mg, 1.5×10^{-3} % wet wt). The fraction eluting with CHCl₃-MeOH (90:10) of the first Si gel column was separated by Si gel columns (cyclohexane-acetone-Et₂NH, 95:5:2 and then hexaneacetone, 9:1) to afford 3,4-dihydromanzamine J (2, 1.2 mg, 4 \times 10⁻⁴ %). The fraction eluting with CHCl₃-MeOH (95:5) in the first Si gel column was separated by Si gel columns (cyclohexane-acetone-Et₂NH, 90: 10:2 and then CHCl₃-MeOH, 90:10) to give 3,4-dihydro-6-hydroxymanzamine A (3, 4.9 mg, 1.5×10^{-3} %).

Manzamine M (1): a colorless amorphous solid; $[\alpha]^{25}_{D}$ +16° (*c* 0.48, MeOH); UV (MeOH) λ_{max} 205 (ϵ 14 000), 233 (3000), 276 (1500), and 359 nm (1000); IR (KBr) $\nu_{\rm max}$ 3410 (br), 2925, 1630, 1405, and 1070 cm⁻¹; ¹H and ¹³C NMR (see Table 1); HOHAHA cross peaks (H/H): 3/4, 5/6, 5/7, 5/8, 6/7, 6/8, 7/8, 13a/13b, 13a/14, 13a/15, 13a/16, 13b/14, 13b/15, 13b/16, 14/15, 15/16, 15/ 17b, 16/17a, 16/17b, 17a/19b, 19a/20a, 19a/20b, 19b/20a, 19b/20b, 20a/20b, 22a/22b, 22a/23a, 22a/23b, 22a/24, 22b/23a, 22b/23b, 22b/24, 23a/23b, 23b/24, 28(2H)/29a, 28(2H)/29b, 28(2H)/30b, 30a/32, 30b/31a, 30b/31b, 31a/ 32, 31a/33, 31b/32, 31b/33, 32/33, 32/34, 32/35b, 33/34, 33/35b, 34/35a, 34/35b, and 36a/36b; NOESY correlations (H/H) 3/4, 5/6, 6/7, 7/8, 11/13a, 11/13b, 13a/13b, 13a/14, 13b/15, 13b/17a, 14/16, 14/26, 15/16, 15/17b, 16/ 17a, 16/17b, 19a/20a, 19a/22a, 19b/22a, 20a/20b, 20a/ 22a, 22a/22b, 22b/23a, 22b/24, 24/35a, 24/35b, 26/28, 28/ 29a, 28/29b, 29a/29b, 30a/31b, 31a/31b, 31b/32, 32/33, 33/35b, 34/35a, 34/35b, 34/36a, and 36a/36b; EIMS m/z 564 (M⁺) and 162; HREIMS *m*/*z* 564.3459 (M⁺), calcd for C₃₆H₄₄N₄O₂, 564.3464.

3,4-Dihydromanzamine J (2): a colorless amorphous solid; $[\alpha]^{30}_{D}$ +50° (*c* 0.10, MeOH); UV (MeOH) λ_{max} 209 (ϵ 13 000), 242 (9000), and 322 nm (4500); IR (KBr) ν_{max} 3420 (br), 2920, 1630, and 1090 cm⁻¹; ¹H and ¹³C NMR (see Table 2); EIMS *m*/*z* 552 (M⁺); HREIMS *m*/*z* 552.3815 (M⁺), calcd for C₃₆H₄₈N₄O, 552.3828.

3,4-Dihydro-6-hydroxymanzamine A (3): a colorless amorphous solid; $[\alpha]^{25}_{D}$ +28° (*c* 1.2, MeOH); UV (MeOH) λ_{max} 207 (ϵ 9000), 225 (6500), 250 (3500), and 337 nm (2500); IR (KBr) ν_{max} 3420 (br), 2920, 1630, 1400, and 1070 cm⁻¹; ¹H and ¹³C NMR (see Table 2); EIMS *m*/*z* 566 (M⁺); HREIMS *m*/*z* 566.3604 (M⁺), calcd for C₃₆H₄₆N₄O₂, 566.3621.

Table 2.	1H and 13C NMR Data of 3,4-Dihy	ydromanzamine J (2) ai	nd 3,4-Dihydro-6-hydrox	ymanzamine A (3) in CDCl ₃
----------	---------------------------------	---------------------------------	-------------------------	--

	2					3				
positn	δ_{H}	m	<i>J</i> (Hz)	$\delta_{ m C}$	m	$\delta_{ m H}$	m	J (Hz)	$\delta_{ m C}$	m
1				159.8	s				158.8	s
3	3.45	m		48.8	ť	3.93	m		48.8	ť
0	3 35	m		10.0	·	3.89	m		10.0	ť
4	2.88	m		19.1	t	2 81	m		19.2	t
1	2.86	m		10.1	Ľ	2.01	m		10.2	Ľ
4a	2.00			117 1	s	2.10			116.2	s
4h				125.5	s				126.0	s
5	7 59	Ь	77	1197	d	6 97	brs		103.4	d
6	7 14	dd	7771	120.1	ď	0.07	515		149.8	s
7	7.26	dd	7182	120.1	d	6 86	brd	82	114.5	d
8	7.20	d	8 2	1120	d	7 29	d	8.2	119.0	d
89	7.40	u	0.2	136 1	u s	1.20	u	0.2	135.2	u s
0a 9a				197 7	5				128.3	5
10				140.1	5				138.0	5
10	6 15	c		133.5	d	6 36	c		140.2	d
11	0.15	3		70.2	u c	0.50	3		60.0	u c
12	2.05	m		10.2	5 +	1 09	m		40.2	5 +
15	2.05	m		40.7	ι	1.52	m		40.5	ι
14	1.40	iii m		91.0	+	1.72	iii m		91.4	+
14	2.27	m		21.9	ι	1.73	m		21.4	ι
15	1.90	111	70 0 2 10 0	190.9	4	1.43	111	7000100	199.0	J.
15	5.52	daa	7.0, 8.3, 10.0	129.3	a J	5.65	daa	7.3, 8.3, 10.8	128.9	u J
10	5.28	at	10.6, 7.6	129.2	a	5.54	at	10.8, 7.3	132.4	a
17	2.93	m		29.1	t	1.//	m		25.5	t
40	2.90	m				1.43	m			
18	1.90	m		28.6	t	1.91	m		26.2	t
4.0	1.55	m		00.4		1.43	m		05.4	
19	1.70	m		29.1	t	1.73	m		25.1	t
	1.20	m				1.43	m			
20	2.91	m		53.4	t	2.61	tt		53.4	t
	2.82	m				2.43	m			
22	2.95	m		49.5	t	2.78	m		49.4	t
	1.94	m				1.95	m			
23	2.17	m		32.3	t	2.01	m		32.6	t
	1.72	m				1.48	m			
24	2.45	m		45.0	d	2.78	m		38.2	d
25				43.2	S				46.8	S
26	3.78	s		59.2	d	3.47	s		75.2	d
28	2.62	m		59.2	t	3.19	m		51.2	t
	2.35	m				3.08	m			
29	1.78	m		29.1	t	1.93	m		29.6	t
	1.70	m				1.27	m			
30	1.78	m		29.1	t	2.29	m		28.2	t
	1.28	m				2.16	m			
31	1.74	m		25.0	t	1.74	m		25.8	t
	1.48	m				1.48	m			
32	5.61	dt	10.9, 7.1	131.0	d	5.97	t	10.4, 7.6	135.2	d
33	5.36	brt	8.8	131.4	d	5.25	brt	9.5	128.2	d
34	2.72	m		26.2	t	4.30	br		55.2	d
	2.19	m								
35	2.18	m		37.4	t	2.78	m		44.6	t
	1.45	m				1.72	m			
36	3.30	d	12.1	65.6	t	2.80	m		68.9	t
	2.08	d	12.1			2.37	m			
		-								

MTPA Esters of Manzamine M (1). Manzamine M (1, 0.5 mg) in pyridine (500 μ L) was treated with (*R*)-(-)-MTPA chloride (5 μ L) at room temperature for 24 h. After addition of MeOH (500 μ L), the solvent was evaporated *in vacuo*, and the residue was purified on SiO₂ TLC (CHCl₃-MeOH, 90:10) to afford the (*S*)-MTPA ester (4a, 0.1 mg) of 1. Compound 4a: ¹H NMR (CD₃-OD) δ 1.4–2.9 (25H, m), 3.51 (3H, s, OMe), 4.10 (1H, s, H-25), 4.31 (1H, m, H-34), 5.41 (1H, m, H-33), 5.45 (1H, m, H-14), 5.46 (1H, m, H-15), 6.01(1H, m, H-16), 6.03 (1H, m, H-32), 6.53 (1H, s, H-12), 7.64–7.25 (8H, m, Ph and H-6, H-7, and H-8), 8.01 (1H, d, *J* = 5.2 Hz, H-4), 8.22 (1H, d, *J* = 7.2 Hz, H-5), and 8.35 (1H, d, *J* = 5.2 Hz, H-3); EIMS *m*/*z* 780 (M⁺) and 547; HREIMS *m*/*z* 780.3865 (M⁺), calcd for C₄₆H₅₁F₃N₄O₄, 780.3862.

Compound **1** (0.5 mg) was treated with (*S*)-(+)-MTPA chloride (5 μ L) by a procedure similar to that described

above to afford the (*R*)-MTPA ester (**4b**, 0.5 mg) of **1**. Compound **4b**: ¹H NMR (CD₃OD) δ 1.4–2.9 (25H, m), 3.51 (3H, s, OMe), 4.10 (1H, s, H-25), 4.19 (1H, m, H-34), 5.40 (1H, m, H-16), 5.47 (1H, m, H-33), 5.55 (1H, m, H-14), 6.03 (1H, m, H-15), 6.30 (1H, br t, J = 9.8 Hz, H-32), 6.53 (1H, s, H-12), 7.25–7.64 (8H, m, Ph and H-6, H-7, and H-8), 8.01 (1H, d, J = 5.2 Hz, H-4), 8.22 (1H, d, J = 7.2 Hz, H-5), and 8.35 (1H, d, J = 5.2 Hz, H-3); EIMS *m*/*z* 780 (M⁺) and 547; HREIMS *m*/*z* 780.3846 (M⁺), calcd for C₄₆H₅₁F₃N₄O₄, 780.3862.

DDQ Oxidation of 3,4-Dihydromanzamine J (2). 3,4-Dihydromanzamine J (**2**, 0.3 mg) in CHCl₃ (0.3 mL) and EtOH (0.3 mL) was treated with DDQ (0.5 mg) at room temperature for 1 h. The reaction mixture was subjected to a Sep-pak NH₂ cartridge (hexane-EtOH, 9:1) to afford manzamine J (**6**, 0.2 mg), of which

physicochemical data were identical to those of authenthic manzamine J in our laboratory.

DDQ Oxidation of 3,4-Dihydro-6-hydroxymanzamine A (3). Compound **3** (0.3 mg) was treated with DDQ (0.5 mg) in the same way as described above to give 6-hydroxymanzamine A (7, 0.2 mg), of which physicochemical data were identical to those of authenthic 6-hydroxymanzamine A in our laboratory.

Acknowledgment. We thank Mr. Z. Nagahama for his help with sponge collection and Dr. J. Fromont, Western Australian Museum, for identification of the sponge. This work was partly supported by a Grant-in-Aid from the Naito Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- (1) Tsuda, M.; Inaba, K.; Kawasaki, N.; Honma, K.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 2319–2324, and references therein.
- (2) Kondo, K.; Shigemori, H.; Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Org. Chem. **1992**, *57*, 2480–2483.
- (3) Kobayashi, J.; Tsuda, M.; Kawasaki, N.; Matsumoto, K.; Adachi, T. *Tetrahedron Lett.* **1994**, *35*, 4383–4386.
- (4) Tsuda, M.; Kawasaki, N.; Kobayashi, J. *Tetrahedron* **1994**, *50*, 7957–7960.
- (5) Tsuda, M.; Kawasaki, N.; Kobayashi, J. *Tetrahedron Lett.* 1994, *35*, 4387–4388.
 (6) Kobayashi, J.; Tsuda, M.; Kawasaki, N.; Sasaki, T.; Mikami, Y.
- (0) Kobayashi, J., 1900a, M., Kawasaki, N., Sasaki, I., Mikalili, I. J. Nat. Prod. **1994**, 57, 1737–1740.
- (7) Sakai, R.; Higa, T.; Jefford, C. J.; Bernardinelli, G. *J. Am. Chem. Soc.* **1986**, *108*, 5404–6405.
- (8) Nakamura, H.; Deng, S.; Kobayashi, J.; Ohizumi, Y.; Tomotake, Y.; Matsuzaki, T.; Hirata, Y. *Tetrahedron Lett.* **1987**, *28*, 621–624.
- (9) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4095.
- (10) Kobayashi, J.; Watanabe, D.; Kawasaki, N.; Tsuda, M. J. Org. Chem. 1997, 62, 9236–9239.

NP970564P